Skip to main content
Advertising

Originally published January 27, 2014 at 6:03 PM | Page modified January 28, 2014 at 3:53 PM

  • Share:
           
  • Comments (4)
  • Print

Can human bodies — not made for space — learn to thrive?

Some problems created by living in space may have been overcome, but there are other health problems that still elude doctors more than 50 years after the first spaceflight.


The New York Times

Most Popular Comments
Hide / Show comments
Two tough engineering problems need to be solved. 1) Gamma radiation shielding. 2) ... MORE
"Legs atrophy, faces puff and pressure inside the skull rises." Wow that... MORE
This is what Bill Gates Foundation should be working on. Isn't this a bit more... MORE

advertising

HOUSTON — In space, heads swell.

A typical human being is about 60 percent water, and in the free fall of space, the body’s fluids float upward, into the chest and the head. Legs atrophy, faces puff and pressure inside the skull rises.

“Your head actually feels bloated,” said Mark Kelly, a retired NASA astronaut who flew on four space-shuttle missions. “It kind of feels like you would feel if you hung upside down for a couple of minutes.”

The human body did not evolve to live in space. And how that alien environment changes the body is not a simple problem, nor is it easily solved.

Some problems, like the brittling of bone, may have been overcome. Others have been identified — for example, astronauts have trouble eating and sleeping enough — and NASA is working to understand and solve them.

Then there are the health problems that still elude doctors more than 50 years after the first spaceflight. In a finding just five years ago, the eyeballs of at least some astronauts became somewhat squashed.

The biggest hurdle remains radiation. Without the protective cocoon of Earth’s magnetic field and atmosphere, astronauts receive substantially higher doses of radiation, heightening the chances that they will die of cancer. How much of a cancer risk later in life is acceptable?

At the Johnson Space Center here, the home base for NASA’s human spaceflight program, scientists probably have until the 2030s to dissect these problems before the agency sends astronauts to Mars — a mission that would take about 2½ years, or nearly six times the current standard tour of duty on the space station.

The longest any human has been off Earth is almost 438 days, by Dr. Valery Polyakov on the Russian space station Mir in 1994 and 1995. (Two private organizations, Inspiration Mars and Mars One, have announced plans to launch a manned interplanetary flight sooner and have had no problem attracting people despite the risks, known and unknown.)

NASA recently announced that it would continue operating the space station until at least 2024, in part for additional medical research.

NASA officials often talk about the “unknown unknowns” — the unforeseen problems that catch them by surprise. The eye issue caught them by surprise, and they are happy it did not happen in the middle of a mission to Mars.

In 2009, during his six-month stay on the international space station, Dr. Michael Barratt, a NASA astronaut who is also a physician, noticed he was having some trouble seeing things close up, as did another member of the six-member crew, Dr. Robert Thirsk, a Canadian astronaut who is also a doctor. So the two performed eye exams on each other, confirming the vision shift toward farsightedness.

They also saw hints of swelling in their optic nerves and blemishes on their retinas. On the next cargo ship, NASA sent up a high-resolution camera so they could take clearer images of their eyes, which confirmed the suspicions. Ultrasound images showed that their eyes had become somewhat squeezed.

Barratt said the vision shift had no effect on his ability to work in space. The concern, however, is that the farsightedness may be just a symptom of more serious changes in the astronauts’ health. “What are the long-term implications?” he said. “That’s the $64 million question.”

It will be one of the many things NASA will be monitoring in the health of Scott Kelly, who will spend one year on the space station beginning in spring 2015, twice as long as his stay there in 2010 and 2011 and the longest for an American. A Russian astronaut, Mikhail Kornienko, will also make a yearlong trip to orbit then. Polyakov and three other Russian astronauts have had orbital stays longer than that and returned seemingly not much the worse for wear.

John Charles, chief of the international science office of NASA’s human-research program, is setting up the medical experiments, designed to figure out how different a six-month stay is from a 12-month stay. “Logically, you might say, how can there not be?” Charles said.

But it is also possible that the body becomes acclimated to weightlessness after only a few months, and that the changes in vision and bones level off.

The doctors will also compare Scott Kelly’s health to that of astronaut Mark Kelly, his twin brother. “I imagine I’ll be giving blood and urine samples,” said Mark Kelly, who is married to Gabrielle Giffords, a former Arizona congresswoman.

“My attitude is, I worked at NASA for 16 years and whatever I can do to help, I will.”

A decade ago, NASA scientists worried that astronauts were returning to Earth with weaker bones, their density draining away by 1 to 2 percent per month. In space, the body does not need to support its weight, and it responds by dismantling bone tissue much faster than on Earth.

NASA turned to osteoporosis drugs and improved exercises, like having the astronauts run while strapped to a treadmill. The up-and-down pounding set off signals to the body to build new bone, and NASA scientists reported that astronauts then came back with almost as much bone as when they had left.

“That was huge,” said Scott Smith, a NASA nutritionist.

For the eyesight issues, scientists have more questions than answers. They suspect that the adverse effects result largely from the fluid shift, the higher pressure of the cerebrospinal fluid in the skull pushing on the back of the eyeballs, but that has not been proved. And that theory does not explain why it usually affects the right eye more than the left, and men far more than women.

Smith has also found that the astronauts who experienced a shift in vision also had increased levels of the amino acid homocysteine, often a marker for cardiovascular disease. That may suggest that a zero-gravity environment sets some biochemical process in motion.

Artificial gravity could be generated by spinning the spacecraft like a merry-go-round, alleviating both bone loss and the fluid shift. But that also would add complexity to a mission and raise the potential for a catastrophic accident.

The lack of gravity also jumbles the body’s neurovestibular system that tells people which way is up. When returning to the pull of gravity, astronauts can become dizzy, something Mark Kelly took note of as he piloted the space shuttle to a landing.

“If you tilt your head a little left or right,” he said, “it feels like you’re going end over end.”

That may not be as big an issue for a Mars spacecraft that is landed autonomously, and if the astronauts have time to rest before getting out of their seats.

Regarding radiation, NASA operates under a restriction that astronauts should not have their lifetime cancer risk raised by more than 3 percentage points, but that is an arbitrary limit. Mark Kelly, for one, said he would be willing to accept twice that if he had a chance to go to Mars.

There may be other complications, though. At Brookhaven National Laboratory on Long Island, scientists are bombarding mice with radiation that mimics high-energy cosmic rays that zip through outer space. Those mice take longer to navigate a maze, suggesting that the radiation may be damaging their brains.

Scientists say it may damage other organs, including the heart, nervous system and digestive system. “Those could be acute effects,” said William Paloski, head of NASA’s human-research program. “We just don’t know. It’s one we’re looking at.”

Beyond the body, there is also the mind. The first six months of Scott Kelly’s one-year mission are expected to be no different from his first trip to the space station.

But Dr. Gary Beven, a NASA psychiatrist, said he was interested in whether anything changed in the next six months. “We’re going to be looking for any significant changes in mood, in sleep, in irritability, in cognition,” he said.

For distant trips beyond Earth’s orbit, astronauts will be isolated from the rest of humanity. During the Apollo missions, there was a lag time of 1.3 seconds between a command from mission control and an astronaut hearing it — the time for a radio signal to travel the 240,000 miles from Houston to the moon. At Mars, the lags would stretch minutes, and real-time conversation with someone on Earth would be impossible.

The crew of a Mars mission — four or six astronauts in NASA’s thinking — would have to be more self-reliant to solve any personality conflicts. Beven envisioned computer systems that could detect subtle changes in facial expressions or tone of voice, perhaps offering some suggestions for defusing tensions.

In a Russian experiment in 2010 and 2011, six men agreed to be sealed up in a mock spaceship simulating a 17-month Mars mission. Four of the six developed disorders, and the crew became less active as the experiment progressed.

“I think that’s just an example of what could potentially happen during a Mars mission, but with much greater consequence,” Beven said. “Those subtle changes in group cohesion could cause major problems.”

Charles said he thought NASA could already send astronauts to Mars and bring them back alive. But given the huge expense of such a mission, he said it was crucial that the astronauts arrived productive and in great health.

“My goal,” he said, “is to see a program that doesn’t deliver an astronaut limping to Mars.”



News where, when and how you want it

Email Icon

Hurry! Last two weeks to save 15%.

Hurry! Last two weeks to save 15%.

Reserve your copy of "The Seattle Sketcher," the long-awaited book by staff artist Gabriel Campanario, for the special price of just $29.95.

Advertising

Partner Video

Advertising


Advertising
The Seattle Times

The door is closed, but it's not locked.

Take a minute to subscribe and continue to enjoy The Seattle Times for as little as 99 cents a week.

Subscription options ►

Already a subscriber?

We've got good news for you. Unlimited seattletimes.com content access is included with most subscriptions.

Subscriber login ►